Acta Cryst. (1998). C54, IUC9800009 [doi:10.1107/S0108270198099752]

The (1*S*,9a*R*) and (1*S*,9a*S*) Relative Configurations of 3-Fluoro-1,9a-dihydro-1-phenyl-1,2-bis(trifluoromethyl)-4*H*-quinolizin-4-one

D. C. Swenson, M. Yamamoto and D. J. Burton

Abstract

The cycloaddition reaction of (*Z*)-1,1,2,5,5,5-hexafluoro-4-phenyl-3-trifluoromethyl-1,3-pentadiene (1) with pyridine gave a major and minor product. Crystal structures identified the major product to be the racemate of the diastereomer (1*S*,9aR)-3-fluoro-9a-hydro-1,2-bistrifluoromethyl-1- phenyl-4*H*-quinolizin-4-one (2), ($C_{17}H_{10}F_7NO$), and the minor product to be the racemate of the diastereomer (1*S*,9aS)- 3-fluoro-9a-hydro-1,2-bistrifluoromethyl-1-phenyl-4*H*-quinolizin-4-one (3), ($C_{17}H_{10}F_7NO$).

Comment

(*Z*)-1,1,2,5,5,5-Hexafluoro-4-phenyl-3-trifluoromethyl-1,3-pentadiene (1) can be prepared in several steps from perfluorovinyl bromide (Hansen, 1984). The reaction of (1) with pyridine gives a unique entry to 4-quinolizone derivatives (Yamamoto, Burton & Swenson, 1994). Two isomers (2) and (3) were isolated from the reaction in yields of 54% and 21%, respectively. The crystal structures of these isomers were done to confirm the structures and establish the relative configurations of the subject compounds. The major (2) and minor (3) products are the rac-(1*S*,9aR) and rac-(1*S*,9aS) diastereomers of 3-fluoro-9a-hydro-1,2-bistrifluoromethyl-1-phenyl-4*H*-quinolizin-4-one, respectively.

Experimental

Compounds (2) and (3) were prepared and crystallized as described in Yamamoto, Burton & Swenson, (1995).

Refinement

Hydrogen atoms in compound (3) were included using the riding model with default parameters.

Computing details

For both compounds, data collection: CAD4 (Enraf-Nonius, 1977); cell refinement: CAD4 (Enraf-Nonius, 1977); data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: direct methods (*MULTAN*, Main, *et al.*,1980); program(s) used to refine structure: *SHELXTL* v5.0 (Sheldrick, 1995); molecular graphics: *SHELXTL* v5.0 (Sheldrick, 1995); software used to prepare material for publication: *SHELXTL* v5.0 (Sheldrick, 1995)

Crystal data

$C_{17}H_{10}F_7NO$	V = 1557.0 (7) Å ³
$M_r = 377.26$	Z = 4
Monoclinic, $P2_1/c$	Μο Κα
a = 7.533 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
b = 10.306 (3) Å	T = 293 (2) K
c = 20.139(5) Å	$0.46 \times 0.41 \times 0.35 \text{ mm}$
$\beta = 95.24 \ (2)^{\circ}$	

Data collection

Enraf Nonius CAD4 diffractometer	$R_{\rm int} = 0.034$
Absorption correction: none	4 standard reflections
8055 measured reflections	every 240 min
3808 independent reflections	intensity decay: none
2291 reflections with $I > 2\sigma(I)$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	236 parameters
$wR(F^2) = 0.127$	Riding
<i>S</i> = 1.03	$\Delta\rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
3808 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °)

1.529 (3)	С7—С8	1.317 (3)
1.535 (2)	C8—C9	1.503 (3)
1.558 (2)	C10—F10A	1.332 (2)
1.592 (2)	C10—F10B	1.333 (2)
1.325 (3)	C10—F10C	1.343 (3)
1.529 (3)	C11—F11B	1.326 (3)
1.341 (2)	C11—F11A	1.327 (3)
1.486 (3)	C11—F11C	1.329 (3)
1.220 (2)	C12—C17	1.392 (3)
1.364 (2)	C12—C13	1.393 (2)
1.409 (2)	C13—C14	1.383 (3)
1.484 (2)	C14—C15	1.381 (3)
1.328 (3)	C15—C16	1.369 (3)
1.433 (3)	C16—C17	1.379 (3)
111.40 (13)	N	112.98 (13)
106.14 (15)	C8—C9—C1	112.38 (15)
113.84 (15)	F10A-C10-F10B	106.4 (2)
110.29 (14)	F10A-C10-F10C	106.6 (2)
111.38 (13)	F10B-C10-F10C	106.2 (2)
	1.529 (3) $1.535 (2)$ $1.538 (2)$ $1.592 (2)$ $1.325 (3)$ $1.529 (3)$ $1.341 (2)$ $1.486 (3)$ $1.220 (2)$ $1.364 (2)$ $1.409 (2)$ $1.484 (2)$ $1.328 (3)$ $1.433 (3)$ $111.40 (13)$ $106.14 (15)$ $113.84 (15)$ $110.29 (14)$ $111.38 (13)$	1.529(3) $C7C8$ $1.535(2)$ $C8C9$ $1.558(2)$ $C10F10A$ $1.592(2)$ $C10F10B$ $1.325(3)$ $C10F10C$ $1.529(3)$ $C11F11B$ $1.341(2)$ $C11F11A$ $1.486(3)$ $C12C17$ $1.220(2)$ $C12C13$ $1.409(2)$ $C13C14$ $1.484(2)$ $C14C15$ $1.328(3)$ $C15C16$ $1.433(3)$ $C16C17$ $111.40(13)$ $NC9C1$ $106.14(15)$ $C8C9C1$ $113.84(15)$ $F10AC10F10B$ $110.29(14)$ $F10BC10F10C$ $111.38(13)$ $F10BC10F10C$

C10—C1—C9	103.40 (13)	F10A—C10—C1	113.7 (2)
C3—C2—C1	120.0 (2)	F10B—C10—C1	113.2 (2)
C3—C2—C11	118.3 (2)	F10CC10C1	110.3 (2)
C1—C2—C11	121.8 (2)	F11B—C11—F11A	106.4 (2)
C2—C3—F3	121.9 (2)	F11B—C11—F11C	107.3 (2)
C2—C3—C4	126.2 (2)	F11A—C11—F11C	107.0 (2)
F3—C3—C4	111.3 (2)	F11B—C11—C2	111.8 (2)
O4—C4—N	124.1 (2)	F11A—C11—C2	112.7 (2)
O4—C4—C3	121.3 (2)	F11C—C11—C2	111.3 (2)
N	114.3 (2)	C17—C12—C13	118.1 (2)
C4—N—C5	118.1 (2)	C17—C12—C1	124.35 (15)
C4—N—C9	119.54 (14)	C13—C12—C1	117.41 (15)
C5—N—C9	120.7 (2)	C14—C13—C12	120.4 (2)
C6—C5—N	122.0 (2)	C15—C14—C13	120.7 (2)
С5—С6—С7	119.5 (2)	C16—C15—C14	119.2 (2)
С8—С7—С6	120.9 (2)	C15—C16—C17	120.8 (2)
С7—С8—С9	123.5 (2)	C16—C17—C12	120.8 (2)
N—C9—C8	110.06 (15)		

(3)

Crystal data	
C ₁₇ H ₁₀ F ₇ NO	$\gamma = 88.36 \ (3)^{\circ}$
$M_r = 377.26$	$V = 762.8 (5) \text{ Å}^3$
Triclinic, <i>P</i> T	Z = 2
a = 8.543 (3) Å	Μο Κα
b = 12.760 (4) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 7.800 (3) Å	T = 293 (2) K
$\alpha = 98.39 \ (3)^{\circ}$	$0.36\times0.13\times0.05~mm$
$\beta = 114.84 \ (3)^{\circ}$	

Data collection

Enraf-Nonius CAD4 diffractometer	$R_{\rm int} = 0.063$
Absorption correction: none	4 standard reflections
3375 measured reflections	every 240 min
2506 independent reflections	intensity decay: 1%
1149 reflections with $I > 2\sigma(I)$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	236 parameters
$wR(F^2) = 0.186$	Riding
<i>S</i> = 0.98	$\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
2648 reflections	$\Delta\rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

CIF access

Table 2

Selected geometric parameters (Å, °)

C1—C2	1.518 (7)	C7—C8	1.319 (7)
C1—C12	1.532 (6)	C8—C9	1.477 (7)
C1-C10	1.538 (7)	C10—F10B	1.327 (6)
С1—С9	1.577 (6)	C10—F10A	1.337 (5)
C2—C3	1.312 (6)	C10—F10C	1.347 (5)
C2-C11	1.505 (7)	C11—F11A	1.308 (6)
C3—F3	1.342 (5)	C11—F11B	1.313 (7)
С3—С4	1.486 (7)	C11—F11C	1.358 (6)
C4—O4	1.214 (5)	C12—C17	1.371 (7)
C4—N	1.356 (6)	C12—C13	1.381 (8)
N—C5	1.421 (6)	C13—C14	1.396 (7)
N—C9	1.492 (6)	C14—C15	1.348 (9)
С5—С6	1.296 (7)	C15—C16	1.351 (10)
C6—C7	1.432 (7)	C16—C17	1.429 (9)
C2-C1-C12	111.7 (4)	C8—C9—C1	114.0 (4)
C2-C1-C10	105.7 (4)	N—C9—C1	113.1 (3)
C12—C1—C10	114.3 (4)	F10B—C10—F10A	106.0 (4)
C2—C1—C9	109.3 (4)	F10B—C10—F10C	105.6 (4)
С12—С1—С9	105.1 (4)	F10A—C10—F10C	105.4 (4)
C10—C1—C9	110.6 (4)	F10B—C10—C1	115.3 (4)
C3—C2—C11	118.4 (5)	F10A—C10—C1	111.8 (4)
C3—C2—C1	118.8 (4)	F10C-C10-C1	112.0 (4)
C11—C2—C1	122.8 (4)	F11A—C11—F11B	107.7 (5)
C2—C3—F3	120.8 (4)	F11A—C11—F11C	105.5 (5)
C2—C3—C4	128.3 (4)	F11B—C11—F11C	105.6 (5)
F3—C3—C4	110.8 (4)	F11A—C11—C2	114.9 (5)
O4—C4—N	125.4 (5)	F11B—C11—C2	112.4 (5)
O4—C4—C3	120.7 (5)	F11C—C11—C2	110.1 (4)
N—C4—C3	113.9 (4)	C17—C12—C13	118.8 (5)
C4—N—C5	118.3 (4)	C17—C12—C1	124.6 (5)
C4—N—C9	120.6 (4)	C13—C12—C1	116.6 (5)
C5—N—C9	119.2 (4)	C12-C13-C14	121.5 (5)
C6—C5—N	121.1 (5)	C15—C14—C13	119.4 (6)
С5—С6—С7	121.3 (5)	C14—C15—C16	120.7 (6)
С8—С7—С6	119.7 (5)	C15—C16—C17	120.7 (6)
С7—С8—С9	123.4 (5)	C12—C17—C16	118.8 (6)
C8—C9—N	110.8 (4)		

Acknowledgements

DJB wishes to thank the National Science Foundation for support of this work.

References

Enraf-Nonius, CAD4 Operations Manual, Delft, 1977.

Fair, C. K. (1990). *MolEN*, An Interactive Intelligent System for Crystal Structure Analysis, User Manual, Enraf - Nonius, Delft, The Netherlands.

Hansen, S.W., Ph.D. Thesis, University of Iowa, 1984.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeClercq, J. P. & Woolfson, M. M. (1980). *MULTAN80*. University of York, England.

Sheldrick, G.M., SHELXTL v5.0, Siemens Analytical X-ray Instruments, Inc., 1995, Madison, WI, USA.

Yamamoto, M., Burton, D. J. & Swenson, D. C. (1995). J. Fluorine Chem. 72, 49-54.

Scheme 1

(2)

Crystal data $C_{17}H_{10}F_{7}NO$ $M_r = 377.26$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 7.533 (2) Å b = 10.306 (3) Å c = 20.139 (5) Å $\beta = 95.24$ (2)° V = 1557.0 (7) Å³ Z = 4

Data collection

Enraf Nonius CAD4 diffractometer	$R_{\rm int} = 0.034$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 30.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 293(2) K	$h = -10 \rightarrow 10$
$\theta/2\theta$ scans	$k = -1 \rightarrow 9$
Absorption correction: none	$l = -28 \rightarrow 28$
8055 measured reflections	4 standard reflections
3808 independent reflections	every 240 min
2291 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	Riding
$wR(F^2) = 0.127$	Calculated $w = 1/[\sigma^2(F_0^2) + (0.0398P)^2 + 0.423P]$ where $P = (F_0^2 + 2F_c^2)/3$?
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
3808 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
236 parameters	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0087 (14)

 $F_{000} = 760$ $D_x = 1.609 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71070 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8-19^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow $0.46 \times 0.41 \times 0.35 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6635 (2)	-0.1996 (2)	0.37095 (7)	0.0411 (4)
C2	0.7840 (2)	-0.0840 (2)	0.35939 (9)	0.0480 (4)
C3	0.8094 (2)	0.0077 (2)	0.40535 (10)	0.0530 (5)
F3	0.8993 (2)	0.11686 (12)	0.39455 (8)	0.0801 (4)
C4	0.7705 (2)	-0.0028 (2)	0.47620 (9)	0.0492 (5)
O4	0.8308 (2)	0.07524 (15)	0.51793 (8)	0.0682 (4)
Ν	0.6793 (2)	-0.11206 (15)	0.49061 (7)	0.0442 (4)
C5	0.6629 (3)	-0.1410 (2)	0.55815 (9)	0.0576 (5)
Н5	0.7181	-0.0872	0.59088	0.069*
C6	0.5710(3)	-0.2428 (3)	0.57646 (10)	0.0698 (6)
Н6	0.5594	-0.2583	0.62135	0.084*
C7	0.4899 (3)	-0.3286 (2)	0.52656 (11)	0.0673 (6)
H7	0.4340	-0.4038	0.53947	0.081*
C8	0.4932 (3)	-0.3025 (2)	0.46266 (10)	0.0578 (5)
H8	0.4485	-0.3643	0.43188	0.069*
C9	0.5655 (2)	-0.1783 (2)	0.43686 (8)	0.0425 (4)
Н9	0.4632	-0.1214	0.42496	0.051*
C10	0.5082 (3)	-0.1943 (2)	0.31429 (10)	0.0606 (5)
F10A	0.5567 (2)	-0.2278 (2)	0.25467 (6)	0.0853 (5)
F10B	0.3716 (2)	-0.27076 (14)	0.32569 (6)	0.0777 (4)
F10C	0.4423 (2)	-0.07343 (14)	0.30811 (6)	0.0803 (4)
C11	0.8802 (3)	-0.0715 (3)	0.29602 (11)	0.0687 (6)
F11A	0.9004 (2)	-0.1847 (2)	0.26625 (7)	0.0907 (5)
F11B	1.0422 (2)	-0.0220 (2)	0.30857 (8)	0.1045 (6)
F11C	0.7913 (2)	0.0055 (2)	0.25165 (8)	0.1140 (6)
C12	0.7680 (2)	-0.3276 (2)	0.37366 (7)	0.0405 (4)
C13	0.9290 (2)	-0.3312 (2)	0.41361 (9)	0.0476 (4)
H13	0.9719	-0.2564	0.43540	0.057*
C14	1.0252 (3)	-0.4453 (2)	0.42106 (10)	0.0581 (5)
H14	1.1320	-0.4468	0.44813	0.070*
C15	0.9643 (3)	-0.5571 (2)	0.38870(11)	0.0615 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15	1.0300	-0.6335	0.39356	0.074*
C16	0.8062 (3)	-0.5542 (2)	0.34941 (10)	0.0603 (5)
H16	0.7646	-0.6292	0.32747	0.072*
C17	0.7080 (3)	-0.4415 (2)	0.34198 (9)	0.0527 (5)
H17	0.6002	-0.4415	0.31547	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0423 (8)	0.0459 (11)	0.0345 (7)	0.0006 (7)	0.0008 (6)	-0.0010 (7)
C2	0.0483 (9)	0.0480 (12)	0.0483 (9)	0.0062 (8)	0.0074 (7)	0.0097 (8)
C3	0.0474 (9)	0.0364 (12)	0.0759 (13)	-0.0005 (8)	0.0102 (8)	0.0089 (9)
F3	0.0811 (9)	0.0435 (8)	0.1186 (11)	-0.0116 (6)	0.0244 (8)	0.0107 (7)
C4	0.0425 (8)	0.0409 (12)	0.0642 (11)	0.0047 (8)	0.0037 (8)	-0.0114 (9)
O4	0.0598 (8)	0.0548 (10)	0.0891 (10)	-0.0033 (7)	0.0024 (7)	-0.0307 (8)
Ν	0.0468 (8)	0.0428 (9)	0.0431 (7)	0.0015 (7)	0.0041 (6)	-0.0074 (6)
C5	0.0629 (11)	0.0684 (15)	0.0409 (9)	0.0107 (10)	0.0018 (8)	-0.0104 (9)
C6	0.0841 (15)	0.079 (2)	0.0481 (11)	0.0059 (13)	0.0178 (10)	0.0104 (11)
C7	0.0807 (14)	0.0563 (14)	0.0694 (13)	-0.0059 (12)	0.0319 (11)	0.0031 (11)
C8	0.0631 (12)	0.0545 (14)	0.0589 (11)	-0.0150 (10)	0.0226 (9)	-0.0110 (9)
C9	0.0398 (8)	0.0454 (11)	0.0424 (8)	0.0000(7)	0.0047 (6)	-0.0054 (7)
C10	0.0577 (11)	0.073 (2)	0.0486 (10)	0.0090 (11)	-0.0074 (8)	-0.0028 (10)
F10A	0.0958 (10)	0.1181 (12)	0.0388 (6)	0.0182 (9)	-0.0112 (6)	-0.0083 (7)
F10B	0.0539 (7)	0.0959 (10)	0.0791 (8)	-0.0084 (7)	-0.0165 (6)	-0.0130 (8)
F10C	0.0770 (8)	0.0840 (10)	0.0751 (8)	0.0261 (7)	-0.0186 (6)	0.0088 (7)
C11	0.0754 (14)	0.072 (2)	0.0622 (12)	0.0071 (12)	0.0228 (10)	0.0204 (12)
F11A	0.1170 (12)	0.0953 (11)	0.0668 (8)	0.0081 (9)	0.0464 (8)	0.0031 (8)
F11B	0.0820 (10)	0.1320 (14)	0.1062 (11)	-0.0215 (10)	0.0457 (8)	0.0083 (10)
F11C	0.1369 (14)	0.1274 (14)	0.0820 (10)	0.0390 (12)	0.0344 (9)	0.0611 (10)
C12	0.0430 (8)	0.0440 (11)	0.0349 (7)	-0.0008 (7)	0.0062 (6)	-0.0029 (7)
C13	0.0471 (9)	0.0404 (11)	0.0542 (10)	-0.0014 (8)	-0.0008 (7)	-0.0030 (8)
C14	0.0497 (10)	0.0549 (14)	0.0683 (12)	0.0018 (9)	-0.0017 (8)	0.0056 (10)
C15	0.0657 (13)	0.0443 (13)	0.0763 (13)	0.0076 (10)	0.0165 (10)	0.0002 (10)
C16	0.0716 (13)	0.0464 (13)	0.0638 (12)	-0.0035 (10)	0.0105 (10)	-0.0164 (10)
C17	0.0558 (10)	0.0546 (13)	0.0473 (9)	-0.0034 (9)	0.0022 (8)	-0.0126 (9)

Geometric parameters (Å, °)

C1—C2	1.529 (3)	C8—H8	0.93
C1—C12	1.535 (2)	С9—Н9	0.98
C1—C10	1.558 (2)	C10—F10A	1.332 (2)
C1—C9	1.592 (2)	C10—F10B	1.333 (2)
C2—C3	1.325 (3)	C10—F10C	1.343 (3)
C2—C11	1.529 (3)	C11—F11B	1.326 (3)
C3—F3	1.341 (2)	C11—F11A	1.327 (3)
C3—C4	1.486 (3)	C11—F11C	1.329 (3)
C4—O4	1.220 (2)	C12—C17	1.392 (3)
C4—N	1.364 (2)	C12—C13	1.393 (2)
N—C5	1.409 (2)	C13—C14	1.383 (3)

N—C9	1.484 (2)	С13—Н13	0.93
C5—C6	1.328 (3)	C14—C15	1.381 (3)
С5—Н5	0.93	C14—H14	0.93
C6—C7	1.433 (3)	C15—C16	1.369 (3)
С6—Н6	0.93	C15—H15	0.93
С7—С8	1.317 (3)	C16—C17	1.379 (3)
С7—Н7	0.93	C16—H16	0.93
C8—C9	1.503 (3)	С17—Н17	0.93
C2—C1—C12	111.40 (13)	N—С9—Н9	107.01 (9)
C2-C1-C10	106.14 (15)	С8—С9—Н9	107.01 (10)
C12—C1—C10	113.84 (15)	С1—С9—Н9	107.01 (9)
C2—C1—C9	110.29 (14)	F10A—C10—F10B	106.4 (2)
C12—C1—C9	111.38 (13)	F10A—C10—F10C	106.6 (2)
C10—C1—C9	103.40 (13)	F10B-C10-F10C	106.2 (2)
C3—C2—C1	120.0 (2)	F10A—C10—C1	113.7 (2)
C3—C2—C11	118.3 (2)	F10B—C10—C1	113.2 (2)
C1 - C2 - C11	121.8 (2)	F10C-C10-C1	110.3 (2)
C2-C3-F3	121.9 (2)	F11B-C11-F11A	106.4 (2)
$C_2 = C_3 = C_4$	1262(2)	F11B-C11-F11C	107.3(2)
F_{3} C_{3} C_{4}	111 3 (2)	F11A—C11—F11C	107.0(2)
04—C4—N	124 1 (2)	F11B-C11-C2	1118(2)
04-C4-C3	121.1(2) 121.3(2)	$F_{11}A - C_{11} - C_2$	112.7(2)
N	1143(2)	F11C-C11-C2	112.7(2)
C4 - N - C5	118.1 (2)	C17-C12-C13	111.3(2)
C4 - N - C9	119 54 (14)	C_{17} C_{12} C_{13} C	124.35(15)
$C_{-N} = C_{-N}$	119.54(14) 120.7(2)	$C_{1,2}^{1,2} = C_{1,2}^{1,2} = C_{1,2}^{1,2$	124.33(13) 117.41(15)
$C_{5} = N_{-} C_{5}$	120.7(2) 122.0(2)	$C_{13} - C_{12} - C_{12}$	117.41(15) 1204(2)
C6 C5 H5	122.0(2) 110.02(12)	$C_{14} = C_{13} = C_{12}$	120.4(2)
N C5 115	119.02(12)	$C_{14} = C_{13} = 1113$	119.82(11)
$N = C_3 = H_3$	119.02 (11)	C12C13	119.82 (11)
$C_{5} = C_{6} = U_{6}$	119.5(2) 120.24(12)	C15 - C14 - C13	120.7(2)
	120.24(12)	C13 - C14 - H14	119.03(12)
$C^{2} = C^{2} = C^{2}$	120.24(12)	C13 - C14 - H14	119.03 (11)
$C_{8} = C_{7} = C_{8}$	120.9 (2)		119.2 (2)
C8—C7—H7	119.53 (14)	С16—С15—Н15	120.39 (13)
C6—C/—H/	119.53 (13)	CI4—CI5—HI5	120.39 (12)
$C^{-}_{-}C^{-}_{8}C^{-}_{-}C^{-}_{9}$	123.5 (2)	C15-C16-C17	120.8 (2)
С/—С8—Н8	118.26 (14)	С15—С16—Н16	119.62 (13)
С9—С8—Н8	118.26 (10)	С1/—С16—Н16	119.62 (12)
N—C9—C8	110.06 (15)	C16—C17—C12	120.8 (2)
N—C9—C1	112.98 (13)	С16—С17—Н17	119.59 (11)
C8—C9—C1	112.38 (15)	С12—С17—Н17	119.59 (11)
C12—C1—C2—C3	-116.9 (2)	C2—C1—C9—C8	-161.77 (15)
C10-C1-C2-C3	118.6 (2)	C12—C1—C9—C8	-37.5 (2)
C9—C1—C2—C3	7.3 (2)	C10—C1—C9—C8	85.1 (2)
C12—C1—C2—C11	62.1 (2)	C2-C1-C10-F10A	72.6 (2)
C10—C1—C2—C11	-62.3 (2)	C12-C1-C10-F10A	-50.3 (2)
C9—C1—C2—C11	-173.7 (2)	C9—C1—C10—F10A	-171.3 (2)
C1—C2—C3—F3	-173.2 (2)	C2-C1-C10-F10B	-165.9 (2)

C11—C2—C3—F3	7.7 (3)	C12-C1-C10-F10B	71.2 (2)
C1—C2—C3—C4	16.8 (3)	C9—C1—C10—F10B	-49.8 (2)
C11—C2—C3—C4	-162.3 (2)	C2-C1-C10-F10C	-47.1 (2)
C2—C3—C4—O4	164.8 (2)	C12-C1-C10-F10C	-170.00 (15)
F3—C3—C4—O4	-6.1 (2)	C9—C1—C10—F10C	69.0 (2)
C2—C3—C4—N	-9.0 (3)	C3—C2—C11—F11B	36.7 (3)
F3—C3—C4—N	-179.88 (14)	C1—C2—C11—F11B	-142.3 (2)
O4—C4—N—C5	-4.0 (3)	C3—C2—C11—F11A	156.6 (2)
C3—C4—N—C5	169.5 (2)	C1—C2—C11—F11A	-22.5 (3)
O4—C4—N—C9	161.3 (2)	C3—C2—C11—F11C	-83.2 (3)
C3—C4—N—C9	-25.1 (2)	C1—C2—C11—F11C	97.7 (2)
C4—N—C5—C6	177.5 (2)	C2-C1-C12-C17	-136.1 (2)
C9—N—C5—C6	12.4 (3)	C10-C1-C12-C17	-16.2 (2)
N—C5—C6—C7	1.9 (3)	C9—C1—C12—C17	100.3 (2)
C5—C6—C7—C8	-5.4 (3)	C2-C1-C12-C13	47.6 (2)
C6—C7—C8—C9	-5.6 (3)	C10-C1-C12-C13	167.6 (2)
C4—N—C9—C8	174.46 (14)	C9—C1—C12—C13	-76.0 (2)
C5—N—C9—C8	-20.6 (2)	C17—C12—C13—C14	0.1 (3)
C4—N—C9—C1	47.9 (2)	C1—C12—C13—C14	176.6 (2)
C5—N—C9—C1	-147.1 (2)	C12-C13-C14-C15	0.5 (3)
C7—C8—C9—N	17.7 (3)	C13-C14-C15-C16	-0.5 (3)
C7—C8—C9—C1	144.5 (2)	C14—C15—C16—C17	0.0 (3)
C2—C1—C9—N	-36.5 (2)	C15-C16-C17-C12	0.7 (3)
C12—C1—C9—N	87.7 (2)	C13—C12—C17—C16	-0.7 (3)
C10—C1—C9—N	-149.6 (2)	C1—C12—C17—C16	-176.9 (2)

(3)

Crystal data	
C ₁₇ H ₁₀ F ₇ NO	Z = 2
$M_r = 377.26$	$F_{000} = 380$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.642 {\rm Mg m}^{-3}$
a = 8.543 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
b = 12.760 (4) Å	Cell parameters from 30 reflections
c = 7.800 (3) Å	$\theta = 10.0 - 13.0^{\circ}$
$\alpha = 98.39 \ (3)^{\circ}$	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 114.84 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 88.36 (3)^{\circ}$	Needle, orange
$V = 762.8 (5) \text{ Å}^3$	$0.36 \times 0.13 \times 0.05 \text{ mm}$

Data collection

Enraf-Nonius CAD4 diffractometer	$R_{\rm int} = 0.063$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.5^{\circ}$
T = 293(2) K	$h = -10 \rightarrow 9$

$\theta/2\theta$ scans	$k = -15 \rightarrow 15$
Absorption correction: none	$l = -1 \rightarrow 9$
3375 measured reflections	4 standard reflections
2506 independent reflections	every 240 min
1149 reflections with $I > 2\sigma(I)$	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	Riding
$wR(F^2) = 0.186$	Calculated $w = 1/[\sigma^2(F_o^2) + (0.0878P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$?
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
2648 reflections	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
236 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0063 (45)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2065 (6)	0.7412 (4)	0.9650 (7)	0.0362 (13)
C2	0.0446 (6)	0.7425 (4)	1.0002 (6)	0.0336 (12)
C3	-0.0586 (6)	0.6578 (4)	0.9358 (7)	0.0357 (12)
F3	-0.2043 (4)	0.6560 (2)	0.9612 (5)	0.0577 (10)
C4	-0.0438 (6)	0.5576 (4)	0.8208 (7)	0.0379 (12)
O4	-0.1590 (4)	0.4898 (3)	0.7548 (5)	0.0540 (11)
Ν	0.1070 (5)	0.5507 (3)	0.8017 (6)	0.0376 (10)
C5	0.1332 (7)	0.4583 (4)	0.6922 (7)	0.0464 (14)
Н5	0.0471	0.4051	0.6355	0.056*
C6	0.2751 (7)	0.4471 (4)	0.6701 (7)	0.0498 (15)
H6	0.2917	0.3842	0.6038	0.060*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.4069 (7)	0.5295 (4)	0.7458 (8)	0.0466 (14)
H7	0.4983	0.5255	0.7103	0.056*
C8	0.3981 (6)	0.6111 (4)	0.8662 (8)	0.0426 (13)
H8	0.4847	0.6639	0.9131	0.051*
C9	0.2578 (5)	0.6229 (3)	0.9304 (7)	0.0349 (12)
Н9	0.3027	0.5981	1.0549	0.042*
C10	0.1590 (7)	0.7938 (4)	0.7850 (8)	0.0438 (14)
F10A	0.0247 (4)	0.7435 (2)	0.6356 (4)	0.0588 (9)
F10B	0.2840 (4)	0.7990 (3)	0.7274 (5)	0.0645 (10)
F10C	0.1108 (4)	0.8944 (2)	0.8090 (4)	0.0600 (9)
C11	-0.0040 (7)	0.8374 (5)	1.1041 (8)	0.0487 (15)
F11A	0.0999 (4)	0.9207 (2)	1.1547 (5)	0.0655 (10)
F11B	-0.0171 (5)	0.8161 (3)	1.2573 (5)	0.0771 (12)
F11C	-0.1620 (4)	0.8696 (3)	0.9906 (5)	0.0713 (11)
C12	0.3617 (6)	0.7941 (4)	1.1408 (7)	0.0404 (13)
C13	0.3911 (6)	0.7624 (4)	1.3133 (8)	0.0486 (15)
H13	0.3174	0.7112	1.3167	0.058*
C14	0.5288 (7)	0.8052 (5)	1.4826 (8)	0.062 (2)
H14	0.5475	0.7821	1.5971	0.075*
C15	0.6346 (8)	0.8803 (6)	1.4786 (10)	0.071 (2)
H15	0.7251	0.9101	1.5916	0.085*
C16	0.6105 (8)	0.9130 (5)	1.3124 (12)	0.080 (2)
H16	0.6865	0.9634	1.3116	0.096*
C17	0.4695 (7)	0.8707 (5)	1.1378 (9)	0.059 (2)
H17	0.4512	0.8947	1.0241	0.071*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.031 (3)	0.032 (3)	0.035 (3)	-0.003 (2)	0.006 (2)	-0.001 (2)
C2	0.027 (3)	0.036 (3)	0.031 (3)	0.004 (2)	0.006 (2)	0.004 (2)
C3	0.029 (3)	0.043 (3)	0.039 (3)	0.002 (2)	0.017 (2)	0.008 (2)
F3	0.037 (2)	0.071 (2)	0.066 (2)	-0.0032 (15)	0.023 (2)	0.004 (2)
C4	0.035 (3)	0.035 (3)	0.039 (3)	0.001 (2)	0.009 (2)	0.013 (2)
04	0.045 (2)	0.051 (2)	0.052 (2)	-0.016 (2)	0.006 (2)	0.003 (2)
Ν	0.034 (2)	0.036 (2)	0.033 (2)	0.003 (2)	0.006 (2)	0.001 (2)
C5	0.050 (3)	0.043 (3)	0.028 (3)	0.005 (3)	0.001 (3)	-0.002 (2)
C6	0.054 (3)	0.044 (3)	0.040 (3)	0.013 (3)	0.013 (3)	-0.002 (3)
C7	0.040 (3)	0.050 (3)	0.047 (3)	0.017 (3)	0.015 (3)	0.011 (3)
C8	0.030 (3)	0.047 (3)	0.045 (3)	0.008 (2)	0.010 (3)	0.009 (3)
C9	0.025 (2)	0.034 (3)	0.032 (3)	0.002 (2)	0.000 (2)	0.004 (2)
C10	0.043 (3)	0.039 (3)	0.049 (4)	0.000 (3)	0.018 (3)	0.010 (3)
F10A	0.061 (2)	0.058 (2)	0.036 (2)	-0.005 (2)	-0.001 (2)	0.0085 (15)
F10B	0.066 (2)	0.071 (2)	0.071 (2)	0.010(2)	0.038 (2)	0.026 (2)
F10C	0.069 (2)	0.041 (2)	0.063 (2)	0.012 (2)	0.019 (2)	0.017 (2)
C11	0.035 (3)	0.057 (4)	0.048 (4)	0.009 (3)	0.013 (3)	0.004 (3)
F11A	0.054 (2)	0.044 (2)	0.080 (2)	0.002 (2)	0.018 (2)	-0.014 (2)
F11B	0.095 (3)	0.086 (3)	0.060 (2)	0.016 (2)	0.046 (2)	0.001 (2)

F11C	0.043 (2)	0.066 (2)	0.085 (3)	0.022(2)	0.012 (2)	0.002(2)
C12	0.030 (3)	0.040 (3)	0.040 (3)	-0.001(2)	0.008 (2)	-0.005(2)
C13	0.035 (3)	0.051 (3)	0.048 (4)	-0.001(2)	0.010 (3)	-0.003(3)
C14	0.043 (3)	0.080 (4)	0.041 (4)	0.003 (3)	0.002 (3)	-0.009(3)
C15	0.039 (4)	0.081 (5)	0.064 (5)	-0.004(3)	0.004(3)	-0.017(4)
C16	0.047 (4)	0.063 (4)	0.105 (6)	-0.030(3)	0.015 (4)	-0.019(4)
C17	0.048 (3)	0.057 (4)	0.063 (4)	-0.014(3)	0.017 (3)	-0.001(3)
	0.0.0	0.007 (1)	0.000 (1)	0.011(0)	0.017 (0)	0.001 (0)
Geometric paran	neters (Å, °)					
C1—C2		1.518 (7)	C8—	H8		0.93
C1—C12		1.532 (6)	С9—	Н9		0.98
C1—C10		1.538 (7)	C10-	-F10B		1.327 (6)
C1—C9		1.577 (6)	C10-	-F10A		1.337 (5)
C2—C3		1.312 (6)	C10-	-F10C		1.347 (5)
C2—C11		1.505 (7)	C11–	-F11A		1.308 (6)
C3—F3		1.342 (5)	C11–	-F11B		1.313 (7)
C3—C4		1.486 (7)	C11–	-F11C		1.358 (6)
C4—O4		1.214 (5)	C12-	C17		1.371 (7)
C4—N		1.356 (6)	C12-	C13		1.381 (8)
N—C5		1.421 (6)	C13-	C14		1.396 (7)
N—C9		1.492 (6)	C13-	-H13		0.93
С5—С6		1.296 (7)	C14-	C15		1.348 (9)
С5—Н5		0.93	C14-	-H14		0.93
С6—С7		1.432 (7)	C15-	C16		1.351 (10)
С6—Н6		0.93	C15-	-H15		0.93
С7—С8		1.319 (7)	C16–	C17		1.429 (9)
С7—Н7		0.93	C16-	-H16		0.93
С8—С9		1.477 (7)	C17–	–H17		0.93
C2—C1—C12		111.7 (4)	C8—	С9—Н9		106.1 (3)
C2-C1-C10		105.7 (4)	N—C	С9—Н9		106.1 (3)
C12-C1-C10		114.3 (4)	C1—	С9—Н9		106.1 (3)
C2—C1—C9		109.3 (4)	F10B			106.0 (4)
C12—C1—C9		105.1 (4)	F10B			105.6 (4)
C10-C1-C9		110.6 (4)	F10A			105.4 (4)
C3—C2—C11		118.4 (5)	F10B	C10C1		115.3 (4)
C3—C2—C1		118.8 (4)	F10A	C1		111.8 (4)
C11—C2—C1		122.8 (4)	F10C			112.0 (4)
C2—C3—F3		120.8 (4)	F11A			107.7 (5)
C2—C3—C4		128.3 (4)	F11A			105.5 (5)
F3—C3—C4		110.8 (4)	F11B	—C11—F11C		105.6 (5)
O4—C4—N		125.4 (5)	F11A			114.9 (5)
O4—C4—C3		120.7 (5)	F11B	C11C2		112.4 (5)
N—C4—C3		113.9 (4)	F11C	C11C2		110.1 (4)
C4—N—C5		118.3 (4)	C17–	C12C13		118.8 (5)
C4—N—C9		120.6 (4)	C17–	C12C1		124.6 (5)
C5—N—C9		119.2 (4)	C13–	C12C1		116.6 (5)
C6—C5—N		121.1 (5)	C12-	C13C14		121.5 (5)
C6—C5—H5		119.5 (3)	C12-	-С13—Н13		119.3 (3)

N—C5—H5	119.5 (3)	C14—C13—H13	119.3 (4)
C5—C6—C7	121.3 (5)	C15—C14—C13	119.4 (6)
С5—С6—Н6	119.4 (3)	C15—C14—H14	120.3 (4)
С7—С6—Н6	119.4 (3)	C13—C14—H14	120.3 (4)
C8—C7—C6	119.7 (5)	C14—C15—C16	120.7 (6)
С8—С7—Н7	120.1 (3)	C14—C15—H15	119.6 (4)
С6—С7—Н7	120.1 (3)	C16—C15—H15	119.6 (4)
С7—С8—С9	123.4 (5)	C15—C16—C17	120.7 (6)
С7—С8—Н8	118.3 (3)	С15—С16—Н16	119.7 (4)
С9—С8—Н8	118.3 (3)	С17—С16—Н16	119.7 (4)
C8—C9—N	110.8 (4)	C12—C17—C16	118.8 (6)
C8—C9—C1	114.0 (4)	С12—С17—Н17	120.6 (3)
N	113.1 (3)	C16—C17—H17	120.6 (4)
C12—C1—C2—C3	-138.9 (5)	C2—C1—C9—N	43.5 (5)
C10—C1—C2—C3	96.1 (5)	C12—C1—C9—N	163.6 (4)
C9—C1—C2—C3	-23.0 (6)	C10-C1-C9-N	-72.5 (5)
C12—C1—C2—C11	41.8 (6)	C2-C1-C10-F10B	-178.9 (4)
C10-C1-C2-C11	-83.2 (5)	C12-C1-C10-F10B	57.8 (6)
C9—C1—C2—C11	157.7 (4)	C9—C1—C10—F10B	-60.7 (5)
C11—C2—C3—F3	0.3 (7)	C2-C1-C10-F10A	-57.7 (5)
C1—C2—C3—F3	-179.0 (4)	C12-C1-C10-F10A	179.0 (4)
C11—C2—C3—C4	176.3 (5)	C9—C1—C10—F10A	60.5 (5)
C1—C2—C3—C4	-3.1 (8)	C2-C1-C10-F10C	60.4 (5)
C2—C3—C4—O4	-172.4 (5)	C12-C1-C10-F10C	-62.9 (5)
F3—C3—C4—O4	3.8 (6)	C9—C1—C10—F10C	178.6 (4)
C2—C3—C4—N	8.4 (7)	C3—C2—C11—F11A	-176.4 (4)
F3—C3—C4—N	-175.3 (4)	C1—C2—C11—F11A	2.9 (7)
O4—C4—N—C5	1.6 (7)	C3—C2—C11—F11B	59.9 (6)
C3—C4—N—C5	-179.3 (4)	C1—C2—C11—F11B	-120.8 (5)
O4—C4—N—C9	-162.9 (5)	C3—C2—C11—F11C	-57.5 (7)
C3—C4—N—C9	16.2 (6)	C1—C2—C11—F11C	121.8 (5)
C4—N—C5—C6	-179.5 (5)	C2-C1-C12-C17	-130.1 (5)
C9—N—C5—C6	-14.9 (7)	C10-C1-C12-C17	-10.1 (7)
N—C5—C6—C7	-3.5 (8)	C9—C1—C12—C17	111.5 (5)
C5—C6—C7—C8	11.2 (8)	C2-C1-C12-C13	48.9 (6)
C6—C7—C8—C9	0.3 (8)	C10-C1-C12-C13	168.9 (4)
C7—C8—C9—N	-16.7 (7)	C9—C1—C12—C13	-69.5 (5)
C7—C8—C9—C1	-145.7 (5)	C17—C12—C13—C14	-1.0 (8)
C4—N—C9—C8	-172.1 (4)	C1-C12-C13-C14	180.0 (5)
C5—N—C9—C8	23.6 (6)	C12-C13-C14-C15	0.9 (8)
C4—N—C9—C1	-42.7 (6)	C13-C14-C15-C16	-1.3 (10)
C5—N—C9—C1	153.0 (4)	C14—C15—C16—C17	1.8 (11)
C2-C1-C9-C8	171.3 (4)	C13—C12—C17—C16	1.4 (8)
C12—C1—C9—C8	-68.6 (5)	C1—C12—C17—C16	-179.6 (5)
C10—C1—C9—C8	55.3 (5)	C15-C16-C17-C12	-1.9 (10)